Free independence in ultraproduct von Neumann algebras and applications
نویسندگان
چکیده
The main result of this paper is a generalization of Popa’s free independence result for subalgebras of ultraproduct II1 factors [Po95b] to the framework of ultraproduct von Neumann algebras (M, φ) where (M,φ) is a σ-finite von Neumann algebra endowed with a faithful normal state satisfying (M) ∩ M = C1. More precisely, we show that whenever P1, P2 ⊂ M ω are von Neumann subalgebras with separable predual that are globally invariant under the modular automorphism group (σ ω t ), there exists a unitary v ∈ U((M ) ω ) such that P1 and vP2v ∗ are ∗-free inside M with respect to the ultraproduct state φ. Combining our main result with the recent work of Ando-Haagerup-Winsløw [AHW13], we obtain a new and direct proof, without relying on Connes-Tomita-Takesaki modular theory, that Kirchberg’s quotient weak expectation property (QWEP) for von Neumann algebras is stable under free product. Finally, we obtain a new class of inclusions of von Neumann algebras with the relative Dixmier property.
منابع مشابه
Various topological forms of Von Neumann regularity in Banach algebras
We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...
متن کاملNonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
متن کاملTracial Algebras and an Embedding Theorem
We prove that every positive trace on a countably generated ∗-algebra can be approximated by positive traces on algebras of generic matrices. This implies that every countably generated tracial ∗-algebra can be embedded into a metric ultraproduct of generic matrix algebras. As a particular consequence, every finite von Neumann algebra with separable pre-dual can be embedded into an ultraproduct...
متن کاملReiter’s Properties for the Actions of Locally Compact Quantum Goups on von Neumann Algebras
متن کامل
Linear maps on von-Neumann algebras behaving like anti-derivations at orthogonal elements
This article has no abstract.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. London Math. Society
دوره 92 شماره
صفحات -
تاریخ انتشار 2015